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We have constructed reliable finite difference methods for approximating the so-
lution to Maxwell's equations using accurate discrete analogs of differential oper-
ators that satisfy the identities and theorems of vector and tensor calculus in dis-
crete form. The numerical approximation does not have spurious modes and mimics
many fundamental properties of the underlying physical problem including conser-
vation laws, symmetries in the solution, and the nondivergence of particular vector
fields. Numerical examples demonstrate the high quality of the method when the
medium is strongly discontinuous and for nonorthogonal, nonsmooth computational
grids.

Key WordsMaxwell’'s equations; mimetic finite difference methods; discrete vec-
tor analysis; numerical methods.

1. INTRODUCTION

We will construct conservative finite difference methods (FDMs) for two-dimensio
Maxwell’'s curl equations for multimaterial medium on nonorthogonal, nonsmooth, logic:
rectangular computational grid. These FDMs are based on the discrete analogs of first
differential operatorsiv, grad, andcurl, that satisfy discrete analogs of the theorems
vector analysis. The new methods produce solutions free of spurious modes and satis
divergence-free conditions exactly. The properties of the discrete operators guarantt
stability of the FDMs and allow powerful iterative methods to solve the systems of lin
equations relating to these FDMs.

This paperis a part of our attempt to develop a discrete analog of vector and tensor ca
that can be used to accurately approximate continuum models for a wide range of ph
processes on logically rectangular, nonorthogonal, nonsmooth grids. fireséicFDMs
mimicfundamental properties of the original continuum differential operators and allow
discrete approximations of partial differential equations (PDES) to preserve critical p
erties including conservation laws and symmetries in the solution of the underlying p
ical problem. In particular, we have constructed discrete analogs of first-order differe
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882 HYMAN AND SHASHKOV

operators, such alv, grad, andcurl, that satisfy the discrete analogs of theorems of vectc
and tensor calculus [10-13]. This approach has also been used to construct high-qu
mimetic FDMs for the divergence and gradient in approximating the diffusion equation [
38, 39].

In this paper we apply our new methodology to construct mimetic FDMs to Maxwell
first-order curl equations,

-

B B, JE 1 B
— = —curl E, — = —curl —, (1.1
ot it € M

whereB is the magnetic flux density arfdl is the electric field intensity. The permittivity,
€, and permeabilityu, can be general symmetric positive-definite tensors with possib
discontinuous elements at the interface between different media. We chose this forn
the equations because at the interface between two media the normal comporﬁnts
and the tangential componentsl%hre continuous (see, for example, [32]). This approacl|
is consistent with the discrete operators described in [10-13], that also uses these ve
components.
In addition to Egs. (1.1), the following “divergence-free” conditions

dvD=0, divB=0, (1.2)

are satisfied. Her® = ¢ E is the electric flux density. If the solution of (1.1) satisfies thes
“divergence-free” conditions initially, then they will be satisfied at later times [32]. Becau
we use discrete operators that satisfy discrete analogs of theorems of vector analysis
discrete analogs of “divergence-free” conditions are automatically a consequence of
discrete “curl” equations.

In this paper we consider 2-D logically rectangular grids, where the tensors determin
material properties are defined in the grid cells, and assume that the interface betv
different materials coincides with the faces of the cells. We describe the primary varia
E by its orthogonal projection onto the directions of edges of the computational cells ¢
the primary variablé8 is described by its orthogonal projection onto the directions norm:
to the cell faces.

Because we use different discrete descriptions of the magnetic and electric fields we r
two different discrete analogs ofirl. To discretizecurl E we use a coordinate invariant
definition of thecurl E based on Stokes’ circulation theorem applied to the faces of the ce
This definition defines the discrete analog of Faraday’s law of electromagnetic induct
locally for each face.

When discretizing the second equation in (1.1), whandu are discontinuous and (or)
the computational grid is not smooth, then it is not possible to separate the discretiza
of curl B from the discretization of curl 5. We construct a discrete analog of the full
operator% curl 5 using a discrete analog of the integral identity for curls

/(A, curl é)dV—/(é,curl A)dvzf (B x Al,A)dS (1.3)
\% \% Vv

which is also responsible for the law of conservation of electromagnetic energyﬁl-ﬂmda
B are arbitrary vector functions, aid -) and [ x -] are dot and cross product of two vectors,
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respectively, and is the unit outward normal to the surfa@® of volumeV. This approach
guarantees that the electromagnetic energy is conserved on the discrete level. This cor
tion is done within the framework of the support-operators method (SOM) [33, 35, 38]

To discretize the conditiodiv B =0 we use the natural coordinate invariant definitio
of the divergence based on Gauss’ divergence theorem. It is shown in [10] that this disi
divergence satisfies the discrete analog of ideutiycurl E = 0in each cell. Therefore if
a discrete analog afiv B =0 holds initially, then it will hold for later times.

To discretize the conditioniv D = div eE =0, we must define a discrete analog o
operatodiv ¢-. Following the approach used in [11], we construct a disaiste operator
using the integral identity

/(W, gradu)dV = —/ udivvvdv+]§ u(W, i)dS, (1.4)
\ \ Vv

whereW andu are arbitrary vector and scalar functions, and the natural discretization of
grad operator is based on its connection to the directional derivative. We prove that tt
operators satisfy a discrete analog of the iderditycurl H = 0. Therefore if the discrete
analog ofdiv € E =0 holds initially, then it will hold for later times.

Usingthese discrete spatial operators, which we denote using capital letters (CCIRIL
and.CURL, ~ % curl ﬁ), we consider the following discretization of Maxwell's curl equa
tions

on+1 B ~n+1 —

Bi” —Bh _ —CURLE®", L=t .CURL, B, (1.5)

At At

where Eﬁl = Eﬂ” +(A—oq) Eﬂ and B2 = a; BM! 4+ (1—ay) B", andt, = Atn. For
some problems with strongly discontinuous coefficients, it is important to preserve
ergy. It is easy to show that the only method of this form which preserves energy is
midpoint methodd; = o>, = 0.5). To solve the system of linear equations arising when u
ing this implicit scheme we reduce the original discrete system of equations to a syste
equations, which contains only the unknoﬁrﬁf“l. The adjointness property of the discrete
curls guarantees that the resulting system of equations will be symmetric and positive-d
(SPD). After solving forﬁﬂ*l, the first equation in (1.5) is used to explictly definﬁﬁ*l.

These discrete operators also can be used to discretize the equations of magnetic dif
[41]

9B - _ B
— = —curl E, o E =curl —,
at 1%
which arise in magnetohydrodynamics (MHD) [14]. Here the conductivis/a symmetric
positive-definite discontinuous tensor. The equations of magnetic diffusion are often s
together with Lagrangian hydrodynamics. The Lagrangian grids move with the media
can be extremely distorted or rough; FDMs have to be robust and accurate on these
The numerical examples presented in Section 8 and [14] demonstrate that our FD
accurate on nonsmooth grids.

Implicit time integration methods are required to efficiently solve these equationsin m
practical applications. When integrating the equations with an implicit method our apprc
guarantees that the system of linear equations is SPD even on highly distorted grids
SPD property allows powerful interative methods to be used to solve these equations.
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The remainder of this paper is organized as follows. In Section 2 we give a brief overvi
of methods for solving Maxwell's equations. In Section 3 we dicuss the properties of 1
governing equations preserved by the discrete model. In Section 4 we describe the gric
discretizations of scalar and vector functions, and the inner products in the discrete func
spaces. In Section 5 we review the derivation of the natural and adjoint finite differer
analogs for the divergence, gradient, and curl and introduce discrete analogs of the oper
dive- and% curl - We also define the discrete analogs of the theorems of vector analy
needed for the derivations in this paper. In Section 6 we describe our FDMs and prove
they satisfy the desired properties. In Section 7 we discuss the solution of implicit equatic
Finally in Section 8, we present the numerical examples.

2. BACKGROUND

There is a huge literature related to solving Maxwell’s equations. We want to note tl
our method ororthogonal gridsis identical to the finite-difference time-domain (FDTD)
method developed by Yee [44] and the structure of discrete operators is the same as i
MAFIA family of methods, [43].

Recently Yee's method has been extended for general grids (see, for example,
pp. 369-374] and references therein). These generalizations use the original grid a
newly defined dual grid. Faraday’s law is discretized on the original grid and the elect
field, E, is defined by components on the edges of the grid, which can be interpretec
the flow of the electric field along the cell edges. This description agrees with the mett
we are proposing if our components firare multiplied by the length of the edges. The
magnetic flux,B, is described in these methods by the components on the cell faces. Th
components can be interpreted as the flux through the face of the cell, and agree with
ponents we are using up to a factor of face area. Ampere’s law is discretized on the
grid using the same procedure (with respect to edges and faces of the dual grid) for
magnetic fieldH, and the electric fluxD. The discretizations of the equations in terms of
these variables are straightforward.

However, to close the system the discrete analogs of constitutive equﬁti@r&eﬁ and
B = wH must be defined consistent with the discretization. BecBuardE (as well asB
andI:|) are defined in different locations, it is not trivial to define a consistent interpolatic
procedure, when coefficients are discontinuous and the grid is nonsmooth. Most proced
use the connection between the co- and contravariant components of the vector to cons
the interpolation formula. The potential disadvantages of this approach are clear wher
consider nonsmooth grids and the case of discontinuous coefficients.

There are several possible approaches to define the dual grid. For example, in [42]
dual grid formed by connecting the centers of the cells of the original grid is adequate
the smooth grid but is a poor choice if the grid is nonsmooth. On very irregular grids t
edges of this dual grid may fail to intersect the corresponding face of the original grid &
instead intersect faces of other cells, or even cross several cells. When this happens
n ande are discontinuous and the interfaces coincide with faces of the original grid, th
the interpolation formulas for the constitutive equations are unlikely to even be consiste
That is, the naive interpolation can lead to errors which do not vanish as grid size goe
zero (see [39, pp. 402—-404]), lead to stability problems [34], and introduce spurious mo
into the solution [16].
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It is recognized [34] that FDMs will be stable if interpolation operators are symm
ric and positive-definite. These properties can be achieved for reasonably regular |
by manipulation of the local basis vectors related to original and the dual grids |2
This framework can be used to interpret our approach as a consistent way to define
metric positive-definite interpolation operators (material matrices, using terminology fr
[43, 34]) without using the dual grids.

The FDM and analysis is presented here for the first time for general problems. Howe
for the equations of magnetic diffusion Shashkov and others published a series of p:
(independent of Yee’s paper) constructing variational FDMs on logically rectangular g
[19]. For this particular problem the discretization and location of variables are the san
the method we are proposing. The discretizations of the curl operator constructed in
papers have been applied to the solutions of Maxwell’s equations in cylindrical geom
on orthogonal grids [7] and to modeling a microwave plasma generator [21]. The stab
and convergence of the variational FDMs have been theoretically analyzed [2], using
energy method based on the adjointness property of the discrete operators.

Algebraic topology provides a natural framework to describe discrete structures. The i
of algebraic topology have been applied to developing numerical methods (especiall
rectangular grids) for more than 40 years (see references in [10]). By applying this appr
to electromagnetics (see, for example, [3] and references therein) formal structures c
introduced that correspond to the objects of electromagnetics. The “edge elements’
“facet elements” introduced in this approach correspond to our discretization of the ele
and magnetic fields. The main difficulties in this approach are the construction of consis
adjoint operators or using terminology of algebraic topology, discrete analogs of the Hc
operator. This paper and [10-13] provide a self-consistent derivation of FDMs base
the discrete vector analysis without resorting to the terminology or machinery of algeb
topology.

There is continuing discussion about the origin of spurious solutions that arise in ¢
putational electromagnetic models (e.g., [16, 17] and references there). Spurious solt
for FDMs for first-order systems can originate from inconsistent discretizations of the
eratorsdiv, curl, andgrad. SOM FDMs defined in a consistent way are free of spuriot
solutions. The consistent definition of the initial electric and magnetic fields can be achie
using the discrete analogs of the orthogonal decomposition theorem proved in [12].
is, given discrete divergence and curl of a discrete vector, the full vector can be uniq
reconstructed and decomposed into two orthogonal vectors in a unique way, satisfyi
discrete analog of the formula= grad ¢ + curl B, if its normal or tangential component
is given on the boundary.

Adiscrete vector field theory on Delaunay—Voronoi meshesis created in [28, 29]. This
ory uses the special geometrical property of the Delaunay—\Voronoi meshes that the sic
Delaunay triangulation are orthogonal to the corresponding sides of the Voronoi polyg
The local orthogonality property makes these grids similar to the usual orthogonal g
Another important property of these grids is that vertices of triangles can be also consic
as “centers” of the Voronoi cells. This approach leads to a natural generalization of
standard staggered mesh FDM for Maxwell’s equations to tetrahedral meshes [22, 30].
approach is accurate on smooth grids, but when the nodal distribution is nonsmooth
segment connecting two neighbors may not intersect the face of the cell (it is always ort
onal to the plane containing this face) and may in fact intersect this plane outside the
Several years ago our approach was extended to Voronoi cells [37] for the heat condu
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equation. When we apply our methodology to this mesh it would have the same directi
as the methods in [22, 30] for the vector components but the magnetic field would be |
different location. Their magnetic field is defined in the middle of the segment’s connect
point to its neighbors but ours is defined in the middle of a cell face. The advantage:
our approach are most evident when the methods are applied on extremely rough g
especially when the properties of the media are discontinuous.

The finite-element method (FEM) (see, for example, [18, 40], and the references ther
have been used extensively to solve Maxwell's equations. From our perspective the n
difference between our FDM and FEMs is that in defining our discretizations we he
built the discrete analogs of the continuous operators directly into the FDMs so they catr
manipulated exactly as the continuous differential operators. Typically, one defines FEM
discretize the space of solutions. This is in contrastto our FDMs where we directly discre
the differential operators which participate in the formulation of governing equations. T
“spirit” of our FDM is close to the original mixed FEM introduced by Raviart and Thoma
[31] and Nedelec [27, 1] and the use of vector elements in [18, Chap. 8, pp. 231-280]
the references therein.

3. MAXWELLS CURL EQUATIONS AND THEIR PROPERTIES

In this paper we consider a nonconducting, free of charge, medium. In this case
governing equations are

aB B,

— = —curl E, (3.1a8)
at

9D -

— =curl H, (3.1b)
at

whereH is magnetic field intensity, and the dependent equations are

0 (3.2a)
0. (3.2b)

div D
div B

If the domain of interest contains more than one media then on the interface between
medium 1 and medium 2, the tangential componeri afind the normal component &
are continuous;

[ix (Eys—E»)] =0, (i, (Bi—B)=0

If Eg. (3.2b) is initially satisfied then it will hold at later times. This follows if we apply
div to the left- and right-hand S|des of (3.1a) and use the idediitgurl E =0 to obtain
a(div B)/at = 0; thereforediv B = const= div B|t o="0. Similarly, if (3.2a) is initially
satisfied it will hold at later times. This follows from applyidiy to the Ieft and right-hand
S|des of (3.1b) and usmg the identidyv curl H =0 to obtaina(div D)at =0; therefore
div D = const= div D|t —0=

Therefore, when constructlng our FDM we require that the discrete analogs of the ide
tiesdiv curl H =0, div curl E =0 holdexactly and that discrete analogs of the conditions
divD =0, divB=0are initially satisfied.
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We now consider the law of conservation of electromagnetic energy and analyze
related properties of the differential operators. The energy density of the electromagt
field is defined ag {(E, D) + (B, H)} for a linear and nondispersive medium whernd
wn are independent of the field variables and time. The conservation law in electromagn
(for a nonconducting medium) can be formulated as [32, p. 339]

d 1 - = 5 o o oL
=— | ={(E, D)+(B,H)}dv+]{ ((E x H],n)dS (3.3)
ot \V; 2 EAY
wheref is the unit outward normal to the surfag¥ . This equation can be derived by first
taking the scalar product of Eg. (3.1b) withand subtracting the resulting equation fron
the scalar product of Eq. (3.1a) witt to obtain

- - - - 0B - dD
(H, curl E) — (E, curl H):—(H,) — (E, ) (3.4)
Then, using the property

—(E,E) = Z(E, E) (3.5)

- 9D 19 - = - 9B 19 - =
(E, a_) = —E(E, D), (H, a_) = —E(H, B). (3.6)
2 2
Next, integrating Eq. (3.4) over the domainand using (3.6) we obtain
- - - - 9 1 - - Lo
/{(H,curl E) — (E,curl H)}dV = ——/ Z{(E, D) + (B, H)}dV.
\% ot Vv 2

The conservation law (3.3) follows from this equation and the identity (1.3) for curls.
the boundary integral in the right-hand side of (1.3) vanishes, then this identity expre
the self-adjointness property of the operatarl. Therefore, the discrete analog of this
conservation law will hold if the time integration method satisfies a discrete analog of (:
and the discreteurl! satisfies a discrete analog of (1.3).

Because the normal components&rﬁnd the tangential componentsl;zohre continuous
on discontinuities in the media, we will use them to describe the magnetic flux density
the electric field intensity in the discrete case. Therefore, we solve Maxwell's equatior
the form

aB _

— = —curl E, (3.7a)
ot

IE 1 B

— = Zcurl =, (3.7b)
at € %

and impose the divergence-free condition lfar(3.2a) as

diveE = 0. (3.8)
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In this paper we consider boundary conditions where the tangential comporiéris of
given on the boundary,

AixE=y. (3.9)

Wheny =0, this condition is appropriate for a perfectly conducting surface. The appro:
mation of (3.9) is especially easy for our FDM because we use the tangential compon
of E to describe the electric field. Impedance boundary conditions (see [18, p. 7]) reqt
a combination of the tangential componentsl::otand H given on the boundary. These
boundary conditions can also be treated (see the note at the end of Subsection 5.2).

In this paper we will consider only the “2-D Case,” where there are no variations in t
electromagnetic fields or geometry in thelirection. That is, all partial derivatives with
respect taz are zero, and the domain extends to infinity in ghdirection with no change
in the shape or position of its transverse cross section.

In this situation the full set of Maxwell’s curl equations can be presented as two grot
of equations (see, for example, [42, pp. 54-55]). The first group of equations involves o
Hy, Hy, and E,, and is called the transverse magnetic (TM) mode. The second group
equations involves onl§y, Ey, andH,, and is called the transverse electric (TE) mode. Th
TM and TE modes are decoupled and can exist simultaneously with no mutual interact

4. SPACES OF DISCRETE FUNCTIONS

4.1. Grid. Consider the logically cuboid grid with hexahedron cells, shown in Fig. 1
where the nodes are enumerated by threeindicgsk) : 1<i <M;1<j<N;1<k=<O.
Sometimes it is useful to interpret the logically cuboid grid as being formed by interse
tions of broken lines that approximate the coordinate curves of some underlying curvilin
coordinate systent(n, ¢). Theé&, n, or ¢ coordinate corresponds to the grid line where
the indexi, j, or k is changing, respectively. This interpretation motivates the notatic

Z ij+Lk+1

iik+1 i+l j+Lk+]

ke 1/2

FIG.1. The elements of the 3-D grid.
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we introduce for the areas of faces and lengths of the edges. We denote the length
edge(, j, k—(@i +1, j, k) byl& 12« the length of the edgé, j, k)—(i, j +1, k) by
I7i,j+1/2,k, and the length of the edge j, K)—(i, |, k+ 1) byl j k+1/2- The area of the sur-
face @, j, K—(G, j + 1, K—C(, j, k+1)—C(, j + 1, k+1) is denoted byS& j;1/2k+1/2,
the area of surfacé, j, k—(@ +1, j, k—(, j,k+1)—(@(i +1, j,k+ 1) is denoted by
Sni+1/2j.k+1/2, and the area of surfad@, j, K)—(@i +1, j, k—@0 +1, j+ 1, kK—(, j +

1, k) is denoted by5Zi11/2 j+1/2k. The volume of a 3-D cell i¥ Ci11/2 j+1/2.k+1/2 and the
volume relating to the node (see Subsection 4.3 for an explanation why we need or
denoted by N; j k.

4.2. Discrete scalar and vector functionsA discrete scalar function is a function whose
domain is the set of multi-indices and range of value®RisFor example, if the set of
multi-indices is [i, j,k—i=1,...,M; j=1,...,N; k=1, ..., O] then the values of
the discrete scalar functidn areU; k. (From here on, we will use the same notation fo
continuous and discrete functions if it does not lead to ambiguity.) From the formal poin
view the discrete scalar function is the vector, whose dimension corresponds to the di
sion of a multi-index set. The space of discrete scalar functions consists of all discrete s
functions with the same domain. The sum of two discrete scalar functions and the mult
cation by a scalar are defined in the obvious waWi= U + V thenW, j k =U; j k + Vi j.x,
and ifW = AU thenW, j « = AU; j «. From aformal point of view the space of discrete scal
functions is the usual linear space. We view discrete scalar functions as an approximati
a continuous scalar function where the multi-index corresponds to the particular locatio
the computational grid. The value of the discrete scalar function is interpreted as an ap|
imate value of a continuous function at this location. For example, we interpret the disc
scalar function with the domairgif j,k) —i=1,...,M; j=1,...,N;k=1,...,0] as
a function whose values are an approximation to the values of a continuous scalar fun
at the nodes of the computational grid. For this reason we will define the domain of
function as the nodes of the grid, or say that this function is defined at the nodes. We de
this space of discrete scalar functionstabl (hereN stands for “node”). In general, we
use italics for spaces of scalar functions.

A discrete vector function is the discrete analog of a continuous vector function. It
three components which can be viewed as discrete scalar functions. From a formal
of view, the space of discrete vector functions is the direct sum of linear spaces, that ¢
spond to the discrete scalar functions. For example, we define the discrete vector fun
A= (AX, AY)T; AX, AY € HN. The space of discrete vector functions at the nodes
denoted a&(\V (in general, we will use script for spaces of discrete vector functions). Nc
that formallyHAN =HN & HN.

We define the spacklC (C stands for “cell”) as the space where the discrete sca
functionU is defined by its values in the celldi;1/2, j+1/2 k+1/2, and values at the centers
of the boundary faces (see [11] for details). We use the cell-centered discretizatior
scalar functions and p that determine the material properties. We define three spa
associated with faces of the cell; the function in the sga& is defined on thé faces of
the cell; the spaceld Sy andH S¢ are defined similarly. There are three spaces associa
with the edges of a cell; the function in the spdd&¢ is defined on thé& edges of the
cell; the space#iLn and HL¢ are defined similarly. We consider two different space
of discrete vector functions. The spabs = HSE @ H Sy @ H S¢ is associated with the
discrete representation of a vector function by its orthogonal projections onto the noi
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Zz ijrlk+]

ijk+! i+Lj+Lk+!

WSnHIﬂJH ( l+1’}+1 )
(ij+1)

WS
€i+l,j+l/2

i+l j+1k

x (i) Wiy (1))

(a) HS in 3-D (b) HS in 2-D

FIG.2. (a)HS discretization of a vector in three dimensions; (b) The 2-D interpretation Githdiscretiza-
tion of a vector results in the face vectors being defined perpendicular to the cell sides and the vertical ve
being defined at cell centers perpendicular to the plane.

of the cell faces (see Fig. 2a). We use this space to describe the discrete magnéic flL
The spaceHL=HLEé ® HLn @ HL¢ is associated with the discrete representation of .
vector function by its orthogonal projections onto the direction of the edges (see Fig. :
We use this space for the discrete representation of the electricfield

In this paper we consider the “2-D” case, where the unknowns depend only on the two ¢
tial coordinatesx andy, even though the vectors may have three components. Formally, 2
discretizations can be obtained from 3-D discretizations wherg-gdges are orthogonal to
the(x, y) plane and have unit length (see [10], for details). From here on, the discrete val
will be independent of thk index and it is dropped from the notation. Also note that for the
2-D caseSE jr12=1nij+1/2, Smiv1s2, =iz andV Gz j112 = Sivaj2j+1/2- The
angle between any t}/\ﬁ/gjdi'%czent sides of the @ell 1/2, j +1/2) that meet at the node

(i, J') is denoted by,

Z Lj+1Lk+1

ijk+l i+l jvLk+]

(i+1,j+1)

i+l j+1Lk

x (ij) ngm/z,i (i+1j)

(a) HL in 3-D (b) #L in 2-D

FIG. 3. (a)HL discretization of a vector in three dimensions; (b) 2-D interpretation oftfeliscretization
of avector results in the edge vectors targential to the cell sides and the vertical vectors being defined at cell n
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The projection of the 3-D4S vector discretization space into 2-D results in face vecto
perpendicular to the quadrilateral cell sides and cell-centered vertical vectors perpendi
to the 2-D plane (see Fig. 2b). We use the notation

BSE = {BSjs1p:i=1....Mj=1.. N—1}
BS) = (BSpis12jy:i=1....M—1j=1_._ N}
B&:{BS{(i_;,_l/Z,j_‘_l/z):i =1,...,M—1;j =1,...,N—1},

andB= (B, BS), BX)T e HS.

The projection of the 3-DH L vector discretization space into 2-D results in vector
tangential to the quadrilateral cell sides and vertical vectors at the nodes (see Fig. 3b
use the notation

EL%Z{ELEGJ’,]_/Z’]A):i =1,...,M—1;j=1,...,N},
ELp = (ELng sz i=1....M;j=1,....,N -1},
EL; = {ELgoy i=1....M;j=1,....N}

andE = (ELE, ELy, EL:)T e HL.

4.3. Discrete inner products.Defining consistent FDMs also requires deriving the af
propriate discrete adjoint operators. To define the adjoint operators we must specift
inner products in the spaces of discrete scalar and vector functions. Because the sp
discrete scalar functions is the usual linear vector space, we have the usual inner prc
[+, -] (which we will call theformal inner produc), which is just the dot product between
vectors in this space. IH C (discrete scalar functions defined in the cell centers), the forn
inner product is

[Uv V]HC dzef Z UCV(Ds
ceHC

wherec is multi-index corresponding to cells. From here on, we will use notadaﬁfowhen
we define anew object. Inthe space of discrete vector functighs HS: @ HSy @ H St
the formal inner product is the sum of the formal inner products of its components
- — d f
[ABlus = > AS:.BS:+ Y ASi,BSie,+ Y A B,

feeHSE fneHSy feeHS

wherefg, fn, andf¢ are multi-indices for the corresponding families of faces of the cell
Similar definitions hold for the spacésN andH.L.

Because our construction is based on the approximation of the integral identities
introduce additional inner products, -) (which we will call thenatural inner producty
which correspond to the continuous inner products. In the space of discrete scalar func
HC, the natural inner product corresponding to the continuous inner prgguatdV +
4,y UvdSis

def

U. Ve £ ) UV Ce,

ceHC
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Where\ﬁlC is the volume of theth cell in the interior of the domain and on the boundary
it is equal to the area of boundary face.

We defineH N to be the subspace éf N where discrete functions are equal to zero or
the boundary

0
HNEU e HN, Ui,; = 0 on the boundagy

(the notation of “zero” above the name of a space indicates the subspace where the func
are equal to zero on the boundary) with natural inner product defined as

def

U, V) s > UaViVN,, (4.1)

0
neHN

wheren is the multi-index corresponding to the nodes &hN, is the nodal volume.
In the space of vector functior®S, the natural inner product corresponding to the
continuous inner produdf, (A, B)dV is
M—-1N-1

- - def 5 -
(A Bis = D > (A Bty VCitizj+1/2)- (4.2)

i=1 j=1

where(,&, I§) is the dot product of two vectors. The dot product in the cell is approximate
by

1 +12]+12)
S = (i+k.j+)
(A, B)iy1/2j+12 = § S EET AEET)
s . (i+1/2,j+1/2)
K,1=0 sir? Pli+k,j+)
Ak 1172 BG4k j+1/2 + ASni11/2.41) BSi1/2,40)

+ (=D (ASE 1k 412 BSni+1/2,i41)

(i+1/2,j+1/2)
+ ASy412,j+) Btk j+1/2)) COS€0<i+k,/j+JI) ! ]

+ ASGi 12 j+1/2B 12, j+1/2 4.3)

where the weight¥, 721,72 satisfy

1

(i+1/2,j+1/2) (i+1/2,j4+1/2) _
Viskjih =0, Z Visk i+ =1 (4.4)
KI=0

In this formula, each indeg, |) corresponds to one of the vertices of the-1/2, j + 1/2)
cell, and the notation for the weights is the same as for the angles of a cell. The formula
this dot product is derived in [39, 11].

This dot product is the simplest robust approximation where if a cell angle is clo
to zero ormr (and consequently the coordinate system related to this angle is close
degenerate), then the corresponding weight (and contribution from this vertex) vanis
smoothly when the coordinate system becomes degenerate. Consequently, this dot pr
can be used for triangular cells that arise as the limit of degenerate quadrilaterals bec
the unknown component of the vector related to the degenerate vertex does not appe
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either the equation or the dot product. This dot product can also be derived by averagin
dot products corresponding to piece-wise constant vector finite-elements. More acc
approximations for the dot product can be derived using the low-order Raviart—Thol
elements [31, 4] and include terms liKeSE; j11/2. ASEit1j+1/2.
The inner product ir{ L is similar to the inner product for spa¢és,
M- - o
= (A, B)i+1/2j+1/2V Ci+1/2,j+1/2)s (4.5)
i=1 |

|_\
Z
H

o
=

Il
N

where(A, I§)i+1/2,j+1/2 approximates the dot product of two vectors in the cell (see [11
and looks similar to one for vectors frokdS.
The natural and formal inner products satisfy the relationships

(U,V)uc =[CU, Vluc  and (A, B)ys = [SA, Blxs, (4.6)

whereC: HC — HC andS : HS — HS are symmetric positive operators;

[CU, V]HC = [U,CV]Hc, and KZU, U]HC > 0, (4.7)
[SA, Blus = [A SBlus,  [SA, Alys > 0. (4.8)

Therefore, the operatdr satisfies the relations
(CU)c=VC,, ceHC.

The operatolS can be written in block form,

) Si1 S2 O AS S1AE + S A
SA=|S1 S 0 AS) | = | SUAS +S2AS) | . (4.9)
0 0 &3/ \AY S3AY

By comparing the formal and natural inner products, we can derive the explicit formt
for S (see [11]). For example, fd& 1 and S;, we have

V(|+k i+1/2)
+)
(S AS).j+1/2) = Z m A i+12), (4.10)
ket Li=01 S @i+
(i+k,j+1/2)
. _ K+34 (,j+D)

(S12AS)i.j+12 = Z (=D W

k=+1;1=0,1 @i, j+h

(i+k, j+1/2)
X COSp;. 1+|]) "8 A4 - (4.11)

The operators 1, $», and Sz are diagonal, and the stencils for the operafgssand $;
are shown in Fig. 4.
The relationship between the natural and formal inner produdtBan

U,V) o =[NU,V],,
HN HN
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2 jl+1!

Stencil for operator S 12 Stencil for operator S

FIG. 4. The stencils of the componen8, and S,; of the symmetric positive operat&that connects the
natural and formal inner producté(B),s = [SA, Bys.

whereN : HN — HN is a symmetric positive operator in the formal inner product, and

0
(NMU)n =V NyUp, neHN

The operatoi : HL — HL, which connects the formal and natural inner products i
‘HL (similar to operatosS for spaceH.S), is symmetric and positive and can be written in
block form as

Liy L1z O ALE L11ALE + Li2ALy
LA=|La Ly 0 ||ALy|=|LnALE + LopALy |. (4.12)
0 0 L/ \AL¢ LasALS

The operatord 13, L2p, andL 33 are diagonal, and the stencils for the operatorsand
L, are the same as for the operat8rsand$; (see Fig. 4). Explicit expressions for these
operators are presented in [11].

Natural discrete inner products satisfy the axioms of inner products, that is, they are
inner products and not just approximations of the continuous inner products. Also, disci
spaces are Euclidean spaces.

5. DISCRETE OPERATORS

In this section we consider the discretization of the spatial operators in Maxwell’s ¢
equations, (3.7a), (3.7b), and the divergence-free conditions, (3.2b), and (3.8).

5.1. Discretization oturl E. The discrete analog afurl E in (3.7a) must act on the
discrete electric field, which belongs*., where on each edge we have one component ¢
the electric field, which is the orthogonal projectiorﬁabnto the direction of the edge. For
this situation it is natural to use the coordinate invariant definition ottire E operator
based on Stokes’ circulation theorem,

fL(E I)dI

n, curl E
(A ) = S

(5.1)

HereSis the surface spanning (based on) the closed durvis the unit outward normal to
S, and is the unit tangential vector to. In the discrete case the faces of the grid cells will be
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the surfacesin Eq. (5.1) and the “curvel_ will be formed by edges of the correspondinc
face. The range of values of this discrete curl will be the normal componem:usrbﬁ
given on the faces of the cells (orthogonal projectionsuof E onto the directions of the
normals to the cell faces).

Because we are using the normal componené ofi the cell faces to describe the mag
netic flux (spacé{S), the discrete analogs of both sides of (3.7a) belong to the same disc
space. This construction preserves a discrete analog of Faraday’s law of electromac
induction locally for each face.

Using the discrete analog of Eq. (5.1), we obtain expressions for components of ve
R= (R%,RS), RS)T =CURL E, where the discrete natural curl

CURL : HL — HS,

and

ELg,j+1— ELG

| M, j+1/2

ELiy1) — ELG

1&412

R j112 = ) RSjit12j = —

)

(5.2)
RSi12j+12 = {(ELniyr 120 missj+12 — ELnijra2lmij+1/2)
—{(EL& 412 j410&i 12,41 — EL&iv12i1&i41/2.§)}/ SEiv1y2,j+1/2

(see [10] for detalils).

The expressions foRE and RS; contain only theEL¢ component ofE and the
expression folRS contains only theE L¢é and E Ly components. This fact allows us to
introduce discrete analogs of the TM and TE modes.

The operator CURL can be presented3nx 3) block form as

0 0 Rgs
CURL=|[ 0 0 Rual, (5.3)
Rz Rz O
where
ELG 11— ELG ELGy; — EL
(Ri3ELY)ij412 = fi.i+1 b , (R3EL)iq12) = — il 6. ,
Inij41/2 1&i11/2,)

E L& 12,41 E412 41 — BLE 17216112,
(ReELE) 1121412 = — &2+l &it12 &iv1/2,il&i112

, (5.4)
Sit1/2.j+1/2

ELnit1j+12mivrj+12 — ELnija2 0172
(Re2ELn)iy1/2,j41/2 = e kit L2 IR
Sit1/2.j+1/2

This structure of the CURL will be used to derive the discrete adjoint opeCAiGtL .

5.2. Discretization og curl %. Because of our choice of primary variables, to discretiz
Eqg. (3.7b), we must derive a discrete approximation for the compound opgratby def
%curl % Note that ife and . are discontinuous and the grid is nonsmooth, then it is n

possible to separate them from tharl in the discrete approximation.
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BecauseE € HL andB e ‘HS the discrete analog @turl , must haveHS as its domain
andH/L as its range. To construct the discrete operator with the complimentary dom
and range we will use a modification of the identity (1.3) responsible for the conservat
of electromagnetic energy. If we consider the identity (1.3) in the subspace of Véctor:
where the surface integral in (1.3) on the right-hand side vanishes and modify it to form
operator.curl ,, we have

1 .- -1 B
/—(curl E, B)dV:/e(E — curl ) dv. (5.5)
Jv ® v € "

That is,ccurl , = curl* in these weighted inner products.

In the discrete case, the modified inner produdtisi, (-, ~)i{f;, uses the weight/j. and
the modified inner product in the spagéLl, (-, -)5,., uses the weight. These modified
inner products are defined in [15] whemndu are general SPD tensors.

The compound discrete adjoint cwCURL,, : HS — HL is defined as

CURL, £'CURL* = (£5)*. CURL! - S7, (5.6)

whereSY/* corresponds to the modified inner product in the sg@Seand£¢ corresponds
to the modified inner product in the spakeC. By definition

5 > I
(.CURL,B, E)5,, = (CURLE, B)Js. (5.7)

Note that for such definition ofCURL,, both sides of the discrete analog of Eq. (3.7b) are
in the same space.

Although CURL is a local operator, the operat@URL, is nonlocal We can determine
C= CURL, B by solving the system of linear equations

£¢C = CURL - Si B, (5.8)

with the local operatorg¢ and CURL! .Sk
Using Eq. (5.4) note

0 0 Rl
CURL'=] 0 0 RL]|. (5.9)
Ris Rz 0

where

- BSit12j-12 BSit12j412
(RélBsf)iJrl/zj :_IsiH/Z,J( ISR R
: Siy1/2,j-1/2 Stiv1/2,j+1/2

BSi-12j+12  BSity2j+172 )
Sti_1/2,j+1/2 Siv1y2j+12 )

i
(Re2BS); jy12 = "7i31+1/2(

(RisBSE), = (B%’j‘l/z _ BS?i,iH/z)’
" 17,172 17112

(RisBS)), , = _(Bsml/li _ BS’7i+1/2,j>'
" 1&i-1/2,] 1&i11/2,;

The details of the discretization can be found in [11].
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In this paper we consider problems where the tangential componeﬁtam‘ given on
the boundary. There are other types of boundary conditions, such as impedance bou
conditions, where the tangential componerh7l5>{ fi] must be approximated on the bound-
ary. For this case the boundary integral in the identity (1.3) does not vanish. The ope
curl E is adjoint to the extended curl operator whiclcigl H in the interior and is the
tangential component dfl on the boundary. For these types of boundary conditions \
must also introduce an inner product in the speEwhich includes the boundary integral
(see [13)).

5.3 Discretization ofliv B. To discretizediv B in the divergence-free condition (3.2b)
we use the coordinate invariant definition of tie operator based on Gauss’ divergenc
theorem,

. g . §3V ( éa ﬁ) d S
divB = \I/Iino By (5.10)
whereni is the unit outward normal to the boundary . In the discrete cas¥, is the volume
of the grid cell andV is the set of faces of the cell.

The natural domain for the discrete operator is the sfgaSeand the natural range is

HC,

DIV: HS — HC, (5.11)

(DIV é)(i 11/2,j4+1/2)

1
= o {(BSi+1j+12Si+1j+1/2 — B j+12 K. j+12))
VCit12,j+1/2)
+ (BSn+1/2,j+1 SN +1/2.j+1) — BS1i+1/2.)) Sni+v2.))) }- (5.12)

The details can be found in [10], where it is also shown that DIV CUREO0. Therefore,
the discrete analog of the divergence-free condition (3.2b) will hold in grid cells.

5.4. Discretization ofdiv e E. BecauseE € HL, we construct the compound discrete
operatoDIV¢ : HL — HN to discretize divergence-free condition (3.8). To defi¥©

0
we consider the identity (1.4) in the subspace of scalar functidnsyhereu(x, y) =0,
(X, y) € 3V, where the boundary term is zero, and modify the resulting identity by chang
W toeW:

/ e(W, gradu)dV = —/ udiveW dV. (5.13)
\% \%
That is, the operatative is the negative adjoint tgrad in the inner products
(U, v) 0 = / wdVv, and (A C) ":ef/ (A, C)dV. (5.14)
H Y% \Y

We also will construct a discrete analog of the compound opetitéras the negative
adjoint to the discretgrad. Because the domain of the discrelie® is L, the range of
the discretgyrad also must bé{ L.
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This discretegrad is derived using the identity where for any directiogiven by the
unit vectorl, the directional derivative can be defined as

% = (gradu, 1), (5.15)

which is the orthogonal projection gfad u onto direction given bj?.
In the discrete case for a functidth € HN, this relationship leads to the coordinate
invariant definition of the natural discrete gradient operator:

GRAD:HN — HL. (5.16)

The vectorG = GRADU is defined as

Gléiz) =~ Glmjuz=—p"—  Glg;=0 (517)
&ir1/2,] Ni,j+1/2
The operatoDIV*: HL — H N is defined as
DI/ € d_ef_ * _ _ A/—1 1 €
DIV¢ = —GRAD* = —N - GRAD' - ¢, (5.18)

whereN'~1, GRAD', andL* are local operators (see [11] for details). The stenciCfiore
is shown in Fig. 5.
To verify that Gauss’ law holds in the discrete case, we confirmit - .CURL, =0
by noting
DIV¢ . .CURL, = —N~1.GRAD' - £¢ - (£)~-CURL' - S¥
= —N"1.GRAD' - CURL! - §7,
and GRAD - CURL' =0 (see [11]).

Because the range of valuesiV ¢ is HN, the discrete analog of the divergence-free
condition (3.8) holds at the nodes.

(i-1,))

(ij-1)

O —ALE O — AIM

R 0
FIG.5. Stencil for the operatddlV¢ = —GRAD* : HL — HN.
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6. FINITE-DIFFERENCE METHOD

6.1. Maxwell's curl equations.We first consider the discrete space-continuous tin
equations

IB -

— = —CURLE, (6.1a)
at

E -

—r =<CURL, B, (6.1b)

where the discrete operators CURL af@URL,, are defined in Subsections 5.1 and 5.2
respectively.

To analyze the law of conservation of electromagnetic energy for Egs. (6.1a), (6.1b),
that the electric and magnetic part of the energy can be expressed in terms of our pri
variablesE and B as

- . L 1 - -
/(D, E)dV = / e(E,B)dV, /(B, H)dv =/ —(B, B)dV.
v Y \Y v M
The discrete analog of the electromagnetic energy is

&0y = Z[(E, E)sye + (B, B)jy]. (6.2)

NI =

Taking the inner produat, -)%{/}; of B with both sides of (6.1a) and similarly for (6.1b)
we obtain

- 1 -

B <\ L1 IE -\° 2

“~B) =—(CURLE,B)/s. ——E] = (CURL, B, E)j,.

at S t

By adding these two equations,

0EEH
at

- - 1 5 o
= —(CURLE, B)/,s + (.CURL, B, E),. (6.3)

and using (5.7), we note that the right side of this equation is zero. This corresponds t
preservation of energy when the tangential componeﬁtiefzero on the boundary. For the
general case, in correspondence with (1.3), the right side of the equation will be equ
a discrete approximation of corresponding the boundary integral. Thus the conservati
electromagnetic energy for the discrete model is the result of the consistent and comp:
construction of the discrete curl operators.

The time discretization method

§n+1 _ én R
—— = CURL E“, (6.4a)
En+l _ En .
—— = <CURL, B2, (6.4b)

whereE® = @ EM™?! 4 (1 — a1) EMandB* = a, B™? + (1 — &) B", andt, = Atn, includes
both explicit and implicit methods.
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Traditionally, because system (1.1) is hyperbolic, either the stable explicit methed)
or ap = 0) or the explicit leapfrog method [20, 23] is used. For some problems, especis
those with strongly discontinuous coefficients, it is important to preserve energy. The o
scheme of form (6.4a), (6.4b) which preserves energy is the second order implicit midp
method &; = o, = 0.5). Also, there are situations when the increased stability of an implic
method is hecessary to avoid taking extremely small time steps. This situation occurs w
computing the motion of fully electromagnetic particles in the implosion of a laser fusic
capsule [1].

To prove that the midpoint method is conservative take the inner product of Eq. (6.
with B®5 and the second equation wili?S. We obtain

(SEH)FI-F]. _ (SEH)I"I
At

o - 1 - -
= —(CURLE®®, B®)/,s + (.CURL,B%® E®®), .. (6.5)

By construction, the right-hand side of this equation reduces to a discrete analog of a bot
ary integral and guarantees the method is conservative. Ther®igsn conservation error
for any other choice at’s.

The discrete form of the “divergence-free” conditions (3.8), (3.2b) is

DIVCE" = 0, (6.6a)
DIVB" =0, (6.6b)

whereDIV€ and DIV are defined by Egs. (5.18) and (5.12), respectively.
To prove that if (6.6a), (6.6b) are satisfied initially, then they will be satisfied at lat
times, we first apply DIV to both sides of Eq. (6.4a),

DIV B™1 — DIV B"

X = —DIV CURL E* = 0. (6.7)
Therefore
DIV B™! = DIV B° = 0. (6.8)
Similarly applyingDIV¢ to (6.4b) and usin@IV¢ .CURL, =0,
DIVCE™! = DIV<E® = 0. (6.9)

Therefore, if the discrete divergence-free conditions are satisfied initially they will ho
for later times.

Let us now consider TM and TE modes of our discrete equations (6.4a), (6.4b). T
TM-mode equations for th® &, BSy components of the magnetic flux and tkd.¢
component of the electric field are

BS‘;—'M_l _ BSE“ Bs7n+1 _ BS7”
—= 2 = _RpgELE™, T = _RpEL™,
AL 13ELS AT 23E LS
. EL¢™—ELZD

1 . 1 1 1
33 At = (Rf13- S} + Ryz- S5) B2 + (Riiz- Sfp + R£3~ S5,)BSy*.
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The TE-mode equations for ti2S; component of the magnetic flux and thé &, ELn
components of the electric field are

B n+1l _ B n
BT TP (RyELE™ 4 ReE L),
ELEMT — ELED ELy™t— ELy" L
Ly AL + L3 At = Rgl%sBSf %
_ELE™ _ELe" | ELg™l-ELp" o
L5 At + L% AL = Ry, S;pBS ™.

7. SOLUTION PROCEDURE

Whena;y, oz £ 0 then the integration method is implicit and on every time step we mu
solve the system of linear equations (6.4a), (6.4b). This system can be written as

B™1 — _Ata; CURLE™! 4 Fg(B", EM), (7.1)
LEEMT — Atay CURL' ,Sﬁ gn-+1 + IEE(én’ En)’ (7.2)
where
Fg(B", E") = B" — At(1— aq) CURLE", (7.3)
Fe(B", E™ = £°E" + At(1 — ap) CURL - S# B", (7.4)

are known. We can easily eliminaR™! and obtain a single second-order equation fc
En-&-l,

AEMLE (€ 4 (At)2my0, CURL - S¥ - CURL)E™! = F(B", EM), (7.5)
where
F(B", E") = Fe(B", E") + Ata, CURL' . S# Fg(B", E" (7.6)

is known. The operataad defimlad by (7.5) is SPD, which follows from its structure an
properties of operators® andS.

Equation (7.5) contains both the TM and TE modes. The TM equation is a “scal
equation forEL¢ and can be solved effectively by any preconditioned iterative meth
which takes advantage of SPD property. The TE equation is a b{@ck?2) SPD system
for EL¢ and EL#n with a structure very close to the system arising for the heat flux
the heat conduction equation solved in [39, 15, 26], and one can use the iterative me
described in these papers to solve this system.

Once (7.5) has been solveB+? is explicitly defined by (7.1). This solution procedure
guarantees that the discrete analog of Faraday’s law is satisfied exactly, independe
how accurate (7.5) is solved (see [36] for a general discussion on violation of conservz:
properties when solving difference equations by iterative methods).
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8. NUMERICAL EXAMPLES

In this section, we demonstrate the effectiveness of our approach for solving Maxwe
curl equations for the TE mode.

We integrate Maxwell’'s curl equations with conservative mid-point methoa-=(«,; =
0.5) and a time step sufficiently small so the time errors are much smaller than the spe
discretization errors. All the parameters in this subsection are given in MKS units and
free space constants afg=8.85x 10712 anduo = 1.2566x 107°.

8.1. Reflection and refraction at the boundary of two nonconducting media: Norm
incidence. The reflection and refraction of the pulse at the boundary of two nonconducti
media [32, pp. 382—385] are the one-dimensional problem when the incident pulse is not
to the interface. We solve this problem in a 2-D rectangular domaln ] x [0, 1], where
interface between two media coincides with thaxis. The permittivities in the “left” and
“right” media aree; = ki€, €2 = kaeg, andu = g for both media. The indices of refraction
aren; = +/kq, no = +/ko. In our calculations we took; =1 andk, = 2.

The incident wave is

E°(x. 1) = AR°G((t — /Hoer(x + 1)) * 10°), (8.1a)
HIM(x, 1) = AQ((t — /oes(x + 1)) * 10%), (8.1b)

whereg is the pulse function

1—co92rs), O0<s<1
g(s) = : (8.2)
0, elsewhere
and the amplitudes are
A =05, [HC Ane — pnep, /€0 (8.3)
€1 Mo
This wave is generated by imposing boundary condition&fpatx = —1
Eylx=_1 = A°g(t % 10°). (8.4)

The incident wave reaches the boundary between the two materials &t timg@ioer =
3.3348x 10°°.

Until the transmitted or reflected waves reach the computational boundaries the e;
solution [32, pp. 382—-385] for the “left” media; 1 < x <0, is the sum of incident wave
and reflected wave and for “right” media=Ox < 1, is the transmitted wave.

The exact and 1-D approximate solutiofdd =129, which play the reference role
for 2-D computations, for the characteristic time moments are presented in Fig. 6. T
numerical method accurately approximates the pulse traveling in a homogeneous m
[t =2x 1072, (a)], during the interaction with the discontinuity=f 4 x 10-9, (b)] and the
shape and velocity of the transmitted and reflected waves$[x 10-°, (c)].

In two dimensions, because this example is posed for the TE mode, the magnetic 1
has just one componeiit, which is measured in the center of the 2-D cell. Becguse
is also given in the center of the cell, we can easily exttacfrom B, = wH,, which is
our primary variable in the numerical method. Note tBat 0 att =0 and therefore the
divergence-free condition fdD is satisfied.
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FIG. 6. Exact and 1-D approximate solutions for the component of magnetic fielgM =129 at (a)t =
2x10° (b)t=4x 10" and (c)t =6=10"°.

We solved this problem on both smooth and random grids, Fig. 7. The smooth gri
obtained by the mapping of a uniform, () grid in [—1, 1] x [0, 1] into the same compu-
tational space (¢, n), y(&, n) by

X(&,n) =&+ 0.1sin27&) sin(2rn), Y&, n) =n+ 0.1sin(2r&) sin(2rn).

The nonsmooth grid (random grid) is obtained by moving nodes in a uniform square
in random directions and with a random amplitude equal to 20% of initial grid size.

To measure the accuracy of the 2-D calculations, we compare the valuésad a
function of time for the 1-D and 2-D calculations at a fixed position. In 1-D we plot tl
solution at the cell center closestxo= 0.1. In 2-D we plot the solution at the cell center
closestto (0.1, 0). These values plotted in Fig. 8 demonstrate that behavior of 1-D anc
solutions is close. In Fig. 9 the straight contour lines illustrate how well the 2-D approxim
solution forH, preserves the one-dimensional shape on the nonuniform smooth grid.

We also calculated the convergence rate in the discrete malxamofrms on a sequence
of refined grids. The error faf, = H S¢ is defined as

H :
U1 j012 = HSGvv2 412 — HSEO X 10 1072 Vg j41s2) (8.5)

where(x?;, yf;) is the geometrical center of the 1/2, j + 1/2) cell. The norms o
are defined as

||\I}“||max=rrin?x|\1/ﬁ,-|, 1, =/ (8", B e

Y WAVAVE WARA W Y
\ Y

FIG. 7. Computational grid$33 x 17); (a) smooth grid, (b) random grid.



904 HYMAN AND SHASHKOV

<z 22 o2,
Y g 0 O O v 0 0 0

(a) (b) (c)

FIG. 8. ComponentH, as a function of time; approximate solution, — solid line; (a) 1-D cades 129,
(b) 2-D case, smoth gridyl =129 N = 65; (c) 2-D case, random grit{) =129 N =65.

ForE = (ELE, ELnp) the errors are defined as

lI’iE+L1E/2,j = EL&iy12) — ELgexaCt(Xiil/z,js yiil/z,j)f (8.6a)
'I’iIT:JLJrnl/Z = EL&ij112 - E LnexaCt(Xin.jJrl/z’ yirfj+1/2)’ (8.6b)

whereE Le®actandE Ly®atare projections of the exact solution to the edges a,ﬁq ki
y|+1/2 ;) and &' +1/2 ¥i'j1+1/2) are the coordinates of the mid-points of the edges. The norn

for UE = (WELE HELY) are defined as

ELS

EL = = =
D] IR, = WE W)y,

The errors at =4 x 1072 in Table | show that thé& , and max norm convergence rates for
both smooth and random grids are between first and second order. Our convergence an
for the 1-D case (not presented here) is in close agreement with these 2-D results.

These results verify the effectiveness of the method for problems with discontinuc
coefficients on nonsmooth, nonorthogonal grids.

1T E | max = max[ max(| ¥,

8.2. Scattering of a plane wave on perfect conduct@ur next example is an infinite
domain problem modeling the scattering of a plane wave on a perfect conductor [20,

-0.5 0 0.5

FIG.9. Isolines ofH, att =4 x 10-°, for smooth gridM =129 N =65.
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TABLE |
The Errors for Wave Reflection and Refraction at the Boundary
of Two Nonconducting Media att = 4 x 10~°

Smooth Grid Nonsmooth Grid
M/N Norm H E H E
33/17 L, 0.209 8.09E-2 0.199 8.26E-2
max 0.532 0.230 0.484 0.219
65/33 L, 9.13E-2 3.23E-2 9.19E-2 3.21E-2
max 0.307 0.110 0.250 0.105
129/65 L, 3.01E-2 8.57E-3 2.91E-2 8.42E-3
max 0.120 3.30E-2 0.106 3.38E-2
Conv. rate L, 1.60 1.91 1.65 1.93
max 1.35 1.73 1.23 1.63

Note.For each grid size in the top sub-row we presenttherror, and in the bottom sub-
row we present the max error. In the very bottom we present the estimation for convergence
rate for both norms.

We consider a plane wave

N 0
E(x,t) = ( > (8.7a)
Viro/€0g((t — (X + 0.1),/éotio) 10%)
H (X, t) = g((t — (X + 0.1),/€op0)10°) (8.7b)

incident to a perfectly conducting circular cylinder of radius 0.1 m centered at the ori
Our media is “free space” with= ¢y andu = . Here the impulsg(s) has the form

o [exp(—10(s — 1)) — exp(—10)]/[1 — exp(—10)], 0<s<?2
9 = {O otherwise

The numerical domain is an annulus with inner radius 0.1 m and outer radius 1.1
Because the problem is symmetric abouttkexis, we solve the problem in the half domair
Q={(X,y) € (0.1<+/%X2+y%2<11) x (y>0)}. We define the tangential component o
E to be zero on all boundaries except the surface of the inner cylinder, where we de
the tangential component &to equal the tangential component of the incident wave (s
[20] for details). That is, we solve for the scattered (i.e., total minus incident) field. Th
boundary conditions are valid unti=4 ns, when the boundary condition on the oute
cylinder starts to generate spurious reflections. The initial conditions correspond to
time when the incident wave (traveling from left to right) just arrives at the inner cylind
Therefore, initially there are no scattered waves and the electric and magnetic field:
zero, and therefore the divergence-free conditiorCfas satisfied.

The problem is solved on the uniform polar grid (see Fig. 10) with 31 nodesamd
16 nodes im9. In Fig. 11 the magnetic field is plotted as a function of time at the tw
observation points indicated in Fig. 10. The results are almost identical with results in
Fig. 7]. Similar to [23] we observe second order convergence in the spatial error.

In Fig. 12, we show the electric vector field at 4 ns forM =40, N = 64. The numerical
solution is free of spurious solutions and the divergence-free conditioB fisrsatisfied
exactly at the internal nodes.
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H, as a function of time at point& = (—0.115 0.0121) andB = (0.259 0233. Time is scaled to ns.
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FIG. 12. Electric vector field at =4 ns.



DISCRETIZATIONS FOR MAXWELL'S EQUATIONS 907

9. DISCUSSION

We have constructed mimetic FDMs for both the TE and TM modes for 2-D Maxwel
curl equations on nonorthogonal, nonsmooth grids. Because the discrete operators
derived using the discrete vector and tensor analysis developed in [10-13] they s¢
discrete analogs of the main theorems of vector analysis. Because the FDMs satisfy
theorems, they do not have spurious solutions and the “divergence-free” condition:
Maxwell’s equations are automatically satisfied.

The tangential components of the electric field and the normal components of mag
flux used in the FDM are continuous even on discontinuities. This choice guarantees
problems with strongly discontinuous coefficients are treated properly. Furthermore
rectangular grids the method reduces to the analytically correct averaging for discontin
coefficients. We proved that the implicit mid-point time integration method is conservat
and leads to a SPD system of linear equations. On the arbitrary quadrilateral grid we
verified that the convergence rate was between first and second order and demons
robustness of the method in numerical examples.

The FDM is formulated in terms of coordinate invariant quantities such as lengths, ar
volumes, and angles. The method can be used in any coordinate system by expressing
quantities in terms of the particular coordinate system. Also, whanando are tensors,
the method can be used by changing the form offaedS the same way as it is done for
the heat equation with tensor conductivity in [15].

As mentioned in Subsection 5.2, the method can be adapted for impedance bour
conditions and the resulting system of linear equations can also be proved to be SPL
proof is similar to the one given in [13]).

Although the extension to 3-D hexahedron grids is technically straightforward the det
are tedious and depend upon the shape chosen for faces of the 3-D grid cells. A standar
of doing thisis to map the hexahedron to reference cube using a tri-linear map. The extel
to unstructured grids is also straightforward once the cell, face, and edge are well defi

The theoretical investigation of the stability and convergence of the FDM describe
this paper can be done using an approach similar to the energy method used in [8, 7
9] for FDMs, or [24, 25] for finite element methods.

We are continuing to develop a discrete version of electromagnetic theory on ger
grids by extending the discrete theory for uniform rectangular grids [5] based on disc
vector analysis [10-13]. The approach will involve discrete scalar and vector potent
which can be introduced on the basis of the discrete version of orthogonal decompos
theorems proved in [12].
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